A Benson-type algorithm for bounded convex vector optimization problems with vertex selection

نویسندگان

چکیده

We present an algorithm for approximately solving bounded convex vector optimization problems. The provides both outer and inner polyhedral approximation of the upper image. It is a modification primal presented by Löhne, Rudloff, Ulus in 2014. There, vertices already known are successively cutoff to improve error. propose new efficient selection rule deciding which vertex cutoff. Numerical examples provided illustrate that this method may solve fewer scalar problems overall therefore be faster while achieving same quality.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Benson type algorithms for linear vector optimization and applications

New versions and extensions of Benson’s outer approximation algorithm for solving linear vector optimization problems are presented. Primal and dual variants are provided in which only one scalar linear program has to be solved in each iteration rather than two or three as in previous versions. Extensions are given to problems with arbitrary pointed solid polyhedral ordering cones. Numerical ex...

متن کامل

An Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function

In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...

متن کامل

An algorithm for approximating nondominated points of convex multiobjective optimization problems

‎In this paper‎, ‎we present an algorithm for generating approximate nondominated points of a multiobjective optimization problem (MOP)‎, ‎where the constraints and the objective functions are convex‎. ‎We provide outer and inner approximations of nondominated points and prove that inner approximations provide a set of approximate weakly nondominated points‎. ‎The proposed algorithm can be appl...

متن کامل

an interior point algorithm for solving convex quadratic semidefinite optimization problems using a new kernel function

in this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual interior point method (ipm) based on a new kernel function with a trigonometric barrier term. iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. although our proposed kernel function is neither a self-regular (sr) function nor logarithmic barrier ...

متن کامل

A Particle Swarm Optimization Algorithm for Mixed-Variable Nonlinear Problems

Many engineering design problems involve a combination of both continuous anddiscrete variables. However, the number of studies scarcely exceeds a few on mixed-variableproblems. In this research Particle Swarm Optimization (PSO) algorithm is employed to solve mixedvariablenonlinear problems. PSO is an efficient method of dealing with nonlinear and non-convexoptimization problems. In this paper,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Optimization Methods & Software

سال: 2021

ISSN: ['1055-6788', '1026-7670', '1029-4937']

DOI: https://doi.org/10.1080/10556788.2021.1880579